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Correlation between Kolmogorov-Sinai entropy and self-diffusion coefficient in simple fluids
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The relationship between the Kolmogorov-Sinai entropy,hKS and the self-diffusion coefficientD is studied
for two classical simple fluid systems with purely repulsive potentials~one system with a Wayne-Chandler-
Anderson potential and the other with a hard-sphere potential!. Numerical simulation data forhKS and D,
normalized by the average collision frequencyn and the diameter of the particles as natural units of time and
distance, reveal that, in the region spanning from normal liquid up to near solidification (0.50<r<0.93), the
Kolmogorov-Sinai entropy has a power law dependeney on the self-diffusion coefficient of the formhKS /n
}(D/s2n)h, in which h is independent of density and temperature.
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A useful way to characterize chaotic phenomena in
namical systems is by means of the Lyapunov exponents
describe the separation rate of systems whose initial co
tions differ by a small perturbation. Considerable effort h
been devoted to the computation and characterization of
Lyapunov exponents of various dynamical systems, and
efficiency and accuracy of the associated numerical meth
have also been explored@1,2#. Recently, it has been recog
nized that the chaotic property of dynamical systems
many degrees of freedom is related to the thermodynamic
the systems. The Lorentz gas has been widely studied
model chaotic system on account of its theoretical simplic
and numerical efficiency. For example, Gaspardet al.
showed that the process by which trajectories escape f
the vicinity of a repeller can be quantitatively understood
diffusive motion @3,4#. As a more realistic model, Evan
et al.carried out molecular dynamics simulations of a sim
fluid system in a nonequilibrium stationary state@5#. They
determined the relation between the Lyapunov spectrum
viscosity coefficients, assuming that Smale’s pairing rule
Lyapunov exponents for Hamiltonian systems can be
tended to non-Hamiltonian systems in contact with a h
bath. The works of Evanset al. and Gaspardet al. have
formed the basis for the majority of later theoretical stud
of nonequilibrium molecular dynamics.

Recently, Barnett and Tajima proposed that the larg
Lyapunov exponent is proportional to the 1/3 power of t
self-diffusion coefficient for the one-component plasma s
tem in the low-density regime, based on the assumption
the force autocorrelation function is proportional to the v
locity autocorrelation function@6–8#. However, the diffusion
properties of dense fluids with short-range potentials, and
molecular-level relationship between those properties and
Lyapunov instability, are still heavily dependent on the n
merical approach employed. Dzutugov recently propo
universal relationships between the excess entropy and
self-diffusion coefficient, and between the excess thermo
namic entropy and the Kolmogorov-Sinai entropy, for den
fluids with various types of interaction potential@9,10#.
Dzugutov’s results imply that an exponential relationsh
should hold between the Kolmogorov-Sinai entropy~KS en-
tropy! hKS and the self-diffusion coefficientD,
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hKS

Nn
} lnS D

ns1
2D . ~1!

Here,hKS, defined as the sum of positive Lyapunov exp
nents according to Pesin’s theorem, is normalized by
number of particlesN and the average collision frequencyn
given by Enskong’s theory@11,12#

n5rs1
2S pkBT

m D 1/2

g~s1!, ~2!

wheres1 is the effective atomic radius, defined as the fi
maximum of the radial distribution functiong(r ), andr is
the number density. Our previous work, which studied
relationship between the self-diffusion coefficient norm
ized by the Enskog transport coefficientDE , and the KS
entropy normalized by the largest Lyapunov exponentl1,
suggests that the relation in Eq.~1! can hold in the low-
density region@13#. However, the self-diffusion coefficien
decreases much faster than expected in the normal and h
density regions. It should be mentioned that, for Eq.~1! to
hold, hKS must go to a negative value asD approaches zero
which is not physically allowed.

hKS measures the rate of information loss of a given s
tem in tangent space, whereas the diffusion coefficient is
response function of the system that measures the infor
tion loss in physical space. Hence, we propose the follow
algebraic relation:

hKS

Nn
}S D

ns2D h

, ~3!

whereh varies depending on the type of interaction poten
function, but is independent of temperature and density. T
form is similar to the one proposed by Barnettet al., except
that in the relation presented hereh is system dependen
rather than being fixed at a value of 1/3.

In the present work, we carry out a numerical simulati
study of the Wayne-Chandler-Anderson~WCA! fluid and
hard-sphere~HS! fluid. The WCA potential is defined as
©2003 The American Physical Society05-1
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f~r !5H 4eF S s

r D 12

2S s

r D 6G1e, r ,21/6s

0, r>21/6s,

~4!

wheres is the interaction range of the potential. Each syst
hasN identical particles of massm in the three-dimensiona
volume V, and the dynamical state is represented by
3N-dimensional momentum vectorp and a 3N-dimensional
position vectorq. Conventionally, we write these vectors
6N-dimensional phase space. The governing equations o
motion are given by 3N coupled ordinary differential equa
tions:

Ġ5S ṗ

q̇
D 5S 2

]U

]q

p/m
D 5G~G!, ~5!

whereU is the interaction potential energy of the system.
In contrast to the continuous dynamics of the WCA flu

the dynamics of the HS fluid is not continuous because
momentum changes in a HS system occur only at the inst
at which particles collide. Thus, the equation of motion
each moment of collision has the form of a discrete mapF,

Gf5F~Gi !, ~6!

where the superscriptsi and f represent before collision an
‘‘after collision,’’ respectively@14#.

For the numerical calculation of Lyapunov exponents,
use the method proposed originally by Benettinet al. @1#,
and developed later by Hoover and Posch@15–18#. Consider
a reference trajectoryG(t) and a bundle of comoving neigh
bor trajectoriesG(t)1dl(t) for initial perturbationdl(0)(l
51, . . . ,6N). According to the multiplicative theorem o
Oseledec, there are 6N orthogonal initial vectors yielding a
set of exponents referred to as the Lyapunov spectrum o
system@19#. These exponents are independent of the me
and initial conditions ofdl . In systems whose motion i
governed by Hamilton’s equations, the time evolution ofdl is
obtained by integrating the following equation, which is o
tained by linearizing the original equations of motion giv
in Eq. ~5!:

dl̇~ t !5
]G~G~ t !!

]G
•dl~ t !. ~7!

In the case of a HS fluid, the time delay between neighbor
trajectories must be considered.

The l th Lyapunov exponentl l is obtained by taking an
average of the local instability ofdl ,

l l5K lim
t→`

1

t
lnH uudl~ t01t!uu

uudl~ t0!uu J L
t0

. ~8!

Here uu•uu and ^•& t0
denote the norm and the average w

respect to an initial timet0, respectively. To avoid numerica
divergence, Gram-Schmidt reorthonormalization is regula
applied. For more detail, we refer the reader to Re
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@13,14,16#. From the set of Lyapunov exponents, th
Kolmogorov-Sinai entropyhKS is obtained from the sum o
all positive Lyapunov exponents,

hKS5 (
l l.0

l l . ~9!

The Kolmogorov-Sinai entropy is an invariant quantity f
the dynamical system that indicates the mean rate of in
mation loss.

A similar approach can be applied to the diffusion beca
the self-diffusion coefficientD is also a measure of informa
tion loss. The self-diffusion coefficient can be obtained fro
the mean-square displacement or velocity autocorrelat
Due to the long algebraic tail in the velocity autocorrelati
function of the HS fluid, the Green-Kubo formalism provid
numerically less accurate values of the diffusion coefficie
Hence, for both fluids, the self-diffusion coefficient is eval
ated from the mean-square displacement:

D5 lim
t→`

lim
N→`

1

6Nt (
i

N

^uur i~ t !2r i~0!uu2&0 . ~10!

For the WCA fluid, Eq.~5! is integrated with the fourth-
order symplectic algorithm withDt5531024 @20,21#,
whereas for the HS fluid the time evolution of the trajecto
is obtained by iteration of the discrete map. To evaluate
self-diffusion coefficient, we monitored the particle displac
ments over 13105 time steps after equilibration, and to ob
tain the Lyapunov exponents we averaged over 13106 time
steps. Here and throughout the paper, we use conventi
reduced units: distance is made dimensionless by dividing
the molecular diameters, mass bym, energy and tempera
ture by the Lennard-Jones parametere, and time by
Ams2/e.

In Fig. 1, we plot the self-diffusion coefficientD*
5D/(ns2), normalized with respect to the average collisi
frequency, against the number density at temperaturesT
50.7 andT51.0, respectively, for systems of 500 particle
Up to r'0.93 the fluids remain in the dense liquid phase a

FIG. 1. Plot of the scaled self-diffusion coefficientD* vs num-
ber densityr at temperaturesT50.7 andT51.0.
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the self-diffusion coefficients are nonzero. The normaliz
self-diffusion coefficient of the HS fluid shows negligib
temperature dependence. This lack of temperature de
dence comes about because the total energy of the syste
linearly dependent on the temperature. Specifically,
Hamiltonian of the HS fluid is proportional toT, and the
average time between collisions is proportional toT21/2.
Hence, the diffusion coefficient and the average collision f
quency are expected to be proportional toT1/2 and, as a
consequence, the self-diffusion coefficient normalized by
average collision frequency,D* , is independent of tempera
ture. On the other hand, the normalized self-diffusion co
ficient of the WCA fluid shows temperature-dependent
havior, and the strength of this temperature depende
becomes stronger with increasing density.

The molecular level mechanism of diffusion in WCA flu
ids differs from that in HS fluids, especially in the high
density region. Diffusion in HS fluids proceeds via succ
sive binary collisions between particle pairs, whereas i
WCA fluid diffusion behavior is determined not only by su
cessive collisions but also by structural relaxations on
continuous landscape of the potential energy surface, w
is sensitive to temperature and causes the reduction of
internal pressure. The additional factors influencing diffus
in WCA fluids cause these fluids to have larger diffusi
coefficients than HS fluids at the same density and temp
ture. For example, the pressure of a WCA fluid of dens
r50.93 atT50.7 is approximately 4.5 times larger than t
pressure of the corresponding HS fluid.

In Fig. 2 the density dependence ofhKS* 5hKS/Nn is
shown for the WCA and HS systems at temperatures oT
50.7 andT51.0. Due to the long times required to calcula
the Lyapunov exponents, the data presented here were
tained from systems ofN532 particles for the WCA fluid
and N564 particles for the HS fluid. The test calculatio
for WCA fluids of N532 andN564 showed thathKS/N has
negligible dependence on the number of particles. For
ample, atr50.92 andT50.7, hKS/N55.08 for both N
532 andN564. We also confirmed for the HS fluids th
the value ofhKS/N shows no difference between results f

FIG. 2. Plot of the scaled Kolmogorov-Sinai entropyhKS* vs
number densityr at temperaturesT50.7 andT51.0.
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N564 andN5108, as observed by van Beijerenet al. @22#.
Figure 2 clearly shows thathKS* is independent of tempera
ture for the HS fluid. This lack of temperature dependenc
due to the linear dependence of the total energy of the sys
on temperature. In general, for systems at the same temp
ture and density, the numerical values of the Lyapunov
ponents of the WCA fluid are smaller than those of the
fluid. This arises because in WCA fluids the trajectory of t
system more frequently passes through regions of conc
potential energy surface, whereas the trajectory of the
fluid system evolves freely between each collision. Consi
a perturbed vectord5$dr,dp%. If a system has a continuou
pairwise potential and a nonzero Hessian matrixH, then the
evolution of d after a certain timedt is approximately$dq
1(dp/m)dt,(dp2H•dq)dt%. If the system is in a region o
sufficiently high density, the ensemble average ofH•dq can
be regarded as an effective restoring force. This idea
been qualitatively verified by observing that the fraction
the unstable mode obtained from the Hessian matrix
creases as the density increases@23#.

In Fig. 3, we plot the logarithm ofhKS* versus the loga-
rithm of D* . This graph clearly shows the algebraic relatio
ship proposed in Eq.~3!. For the HS fluids, the relationshi
between these two quantities is the same at the two temp
tures considered, with a fixed value ofh.0.17 within an
error of 3%. For the WCA fluids, the value ofh is also
independent of temperature, with a value ofh.0.44, and the
temperature dependence can be reflected in a prefactorp(t)
as follows:

hKS

Nn
5p~T!S D

ns2D h

. ~11!

The numerical values of the exponents for the HS and W
systems are far from the value of 1/3 proposed by Barnett
a low-density plasma, and furthermore the exponent is s
tem dependent. However, the mathematical form of the r
tion remains the same. Figure 3 shows thathKS* , which is a

FIG. 3. Plot of the reduced Kolmogorov-Sinai entropyhKS* vs
the reduced diffusion coefficientsD* at temperaturesT50.7 and
T51.0.
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measure of of the global instability of the system, is rela
to D* by a simple algebraic relation, which supports t
qualitative similarity between these two quantities. Next,
more closely examine quantitative differences, we focus
two cases. The first case considers the HS fluid atr50.83
and T51.0, and the WCA fluid atr50.60 andT51.0. As
can be seen in Fig. 1, these two systems have almos
same value ofhKS* ~0.740 for the HS fluid and 0.736 for th
WCA fluid!. However, the normalized self-diffusion coeffi
cientsD* of the two systems are markedly different. Th
difference is due to the different behavior of velocity au
correlation function of each system. The velocity autocor
lation function of the HS fluid shows a fast initial deca
followed by a small peak that is due to backscattering.
the other hand, the velocity autocorrelation function of t
WCA fluid shows only a slow monotonic decay without a
sign of backscattering, resulting in a much larger value
D* for the WCA fluid. Further study shows that WCA fluid
begin to show backscattering forr.0.78. Thus, the secon
case we consider is the HS fluid atr50.75 and the WCA
fluid at r50.82, withT51.0 for both cases. The normalize
.

f
e,
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self-diffusion coefficientsD* of the HS fluid and WCA fluid
are 4.2631023 and 4.1431023, respectively. Both system
show clear small peaks in the velocity autocorrelation fu
tion that are characteristic of backscattering, buthKS* of the
HS fluid is almost twice that of the WCA fluid. This larg
difference is a reflection of the fact that the effective rest
ing force mentioned above continually suppresses the s
ration rate of small perturbations in WCA systems.

In summary, we examined the KS entropy and the s
diffusion coefficient of HS fluids and WCA fluids. The KS
entropy and the diffusion coefficient, normalized by the a
erage collision frequency, show monotonic decay with
spect to number density. From observations of the den
dependence of these two quantities, we proposed an a
braic relationship betweenhKS* andD* ~depicted in Fig. 3!.
The numerical data forhKS* andD* are fitted to Eq.~3! with
high precision with values ofh50.17 and 0.44 for the HS
fluid and WCA fluid, respectively.
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