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Correlation between Kolmogorov-Sinai entropy and self-diffusion coefficient in simple fluids
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The relationship between the Kolmogorov-Sinai entrdpy and the self-diffusion coefficierd is studied
for two classical simple fluid systems with purely repulsive potenfiaige system with a Wayne-Chandler-
Anderson potential and the other with a hard-sphere potgnbiimerical simulation data fongs and D,
normalized by the average collision frequencgnd the diameter of the particleas natural units of time and
distance, reveal that, in the region spanning from normal liquid up to near solidificationp50.93), the
Kolmogorov-Sinai entropy has a power law dependeney on the self-diffusion coefficient of thénfgim
«(D/a?v)", in which 7 is independent of density and temperature.
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A useful way to characterize chaotic phenomena in dy-
namical systems is by means of the Lyapunov exponents that N—oc In
describe the separation rate of systems whose initial condi- v
tions differ by a small perturbation. Considerable effort has ) N
been devoted to the computation and characterization of thgere, hks, defined as the sum of positive Lyapunov expo-
Lyapunov exponents of various dynamical systems, and thB€nts according to Pesin's theorem, is normalized by the
efficiency and accuracy of the associated numerical methodd/mber of particleN and the average collision frequeney
have also been explordd,2]. Recently, it has been recog- 9diven by Enskong's theorj1,12
nized that the chaotic property of dynamical systems of

. . kaT 1/2
many degrees of freedom is related to the thermodynamics of V= o2 Kl (o) )
the systems. The Lorentz gas has been widely studied as a P T gtow),
model chaotic system on account of its theoretical simplicity
and numerical efficiency. For example, Gaspagtlal. whereo, is the effective atomic radius, defined as the first
showed that the process by which trajectories escape fromaximum of the radial distribution functiog(r), andp is
the vicinity of a repeller can be quantitatively understood ashe number density. Our previous work, which studied the
diffusive motion [3,4]. As a more realistic model, Evans relationship between the self-diffusion coefficient normal-
et al. carried out molecular dynamics simulations of a simplejzed by the Enskog transport coefficieBtz, and the KS
fluid system in a nonequilibrium stationary stdfd. They  entropy normalized by the largest Lyapunov exponent
determined the relation between the Lyapunov spectrum anguggests that the relation in E€L) can hold in the low-
viscosity coefficients, assuming that Smale’s pairing rule ofdensity region[13]. However, the self-diffusion coefficient
Lyapunov exponents for Hamiltonian systems can be exdecreases much faster than expected in the normal and high-
tended to non-Hamiltonian systems in contact with a heaglensity regions. It should be mentioned that, for Ek).to
bath. The works of Evanet al. and Gasparcet al. have  hold, hks must go to a negative value &sapproaches zero,
formed the basis for the majority of later theoretical studiesyhich is not physically allowed.
of nonequilibrium molecular dynamics. hks measures the rate of information loss of a given sys-

Recently, Barnett and Tajima proposed that the largesfem in tangent space, whereas the diffusion coefficient is the
Lyapunov exponent is proportional to the 1/3 power of theresponse function of the system that measures the informa-

self-diffusion coefficient for the one-component plasma systion loss in physical space. Hence, we propose the following
tem in the low-density regime, based on the assumption thaflgebraic relation:

the force autocorrelation function is proportional to the ve-

D
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@

locity autocorrelation functiop6—8|. However, the diffusion h D \7”

; : : ; KS
properties of dense fluids with short-range potentials, and the —x _2) , (3)
molecular-level relationship between those properties and the Nv o

Lyapunov instability, are still heavily dependent on the nu-

merical approach employed. Dzutugov recently proposeavheres varies depending on the type of interaction potential
universal relationships between the excess entropy and tHanction, but is independent of temperature and density. This
self-diffusion coefficient, and between the excess thermodyform is similar to the one proposed by Barnettal, except
namic entropy and the Kolmogorov-Sinai entropy, for densehat in the relation presented hergis system dependent
fluids with various types of interaction potentig®,10]. rather than being fixed at a value of 1/3.

Dzugutov’s results imply that an exponential relationship In the present work, we carry out a numerical simulation
should hold between the Kolmogorov-Sinai entrdys en-  study of the Wayne-Chandler-Anders¢W/CA) fluid and
tropy) hgs and the self-diffusion coefficierd, hard-spheréHS) fluid. The WCA potential is defined as
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whereg is the interaction range of the potential. Each system 45T & ¢ * . i
hasN identical particles of massi in the three-dimensional “@ -5 | ®s ¢ 7
volume V, and the dynamical state is represented by a 5 5| 5 )OS J
3N-dimensional momentum vectprand a N-dimensional 3 g s *,
position vectorg. Conventionally, we write these vectors in 6r Ty A ’0,. T
6N-dimensional phase space. The governing equations of thi 65 F ® AAAA s
motion are given by Bl coupled ordinary differential equa- L ° QAAAS
tions: i ®
_7.5 L 1 1 1 1 1 1 1
ouU 05 055 06 065 07 075 08 08 09
. p -—
== da|=cm, (5) P
q p/m FIG. 1. Plot of the scaled self-diffusion coefficiebt vs num-

. . ) ) ber densityp at temperature$=0.7 andT=1.0.
whereU is the interaction potential energy of the system.
In contrast to the continuous dynamics of the WCA fluid,[13,14,16. From the set of Lyapunov exponents, the

the dynamics of the HS fluid is not continuous because th&olmogorov-Sinai entropyks is obtained from the sum of
momentum changes in a HS system occur only at the instantg| positive Lyapunov exponents,
at which particles collide. Thus, the equation of motion at
each moment of collision has the form of a discrete rRa
P hks= >\2>o A 9)
|

I'=F("), (6)

h h ioisand bef lisi d The Kolmogorov-Sinai entropy is an invariant quantity for
XV ere the §up?rscrlp sandf represent before collision and ¢ dynamical system that indicates the mean rate of infor-
after collision,” respectively[14]. mation l0ss

FOLthe nur:nincal caICL:antlo_n. of Ill_yet)purllgov ex_por?enlts, WE A similar approach can be applied to the diffusion because
use the method proposed originally by Benettinal. [1], the self-diffusion coefficienb is also a measure of informa-

and developed_later by Hoover and Pojts-18. Consnd_er tion loss. The self-diffusion coefficient can be obtained from
a refergnce t.rajectorF(t) and a b_updle of comoving neigh- yhe mean-square displacement or velocity autocorrelation.
bor trajectoriesI'(t) + §(t) for initial perturbationd(0)(I  pye o the long algebraic tail in the velocity autocorrelation
=1,...,@N). According to the multiplicative theorem of ,nction of the HS fluid, the Green-Kubo formalism provides
Oseledec, there areNGorthogonal initial vectors yielding & merically less accurate values of the diffusion coefficient.

set of exponents referred to as the Lyapunov spectrum of thence for hoth fluids, the self-diffusion coefficient is evalu-
system[19]. These exponents are independent of the MetriGiad from the mean-square displacement:

and initial conditions ofd . In systems whose motion is

governed by Hamilton’s equations, the time evolutiordois 1 N

obtained by integrating the following equation, which is ob- D=lim lim BNT 2 {|ri(t) =1, (0)|%o. (10)
tained by linearizing the original equations of motion given t—eN—e !

in Eq. (5: For the WCA fluid, Eq.(5) is integrated with the fourth-

IG(T(1)) order symplectic algorithm withAt=5x10"* [20,21],

—r 8(1). (7)  whereas for the HS fluid the time evolution of the trajectory
is obtained by iteration of the discrete map. To evaluate the

In the case of a HS fluid, the time delay between neighborin&elf'diﬁusmn coefficient, we monitored the particle displace-
trajectories must be considered. ments over X 10° time steps after equilibration, and to ob-

The Ith Lyapunov exponenk, is obtained by taking an tain the Lyapunov exponents we averaged overlff time

a(t)=

average of the local instability of , steps. Here and throughout the paper, we use conventional
reduced units: distance is made dimensionless by dividing by
1 (]|a(te+ 7] the molecular diametes, mass bym, energy and tempera-
?\|=< |lm;|n[w > - (8  ture by the Lennard-Jones parameter and time by
T 0 t Jmo?/e.
In Fig. 1, we plot the self-diffusion coefficienD*
Here|[-|[ and(-), denote the norm and the average with =pj/(1¢?), normalized with respect to the average collision

respect to an initial timeé,, respectively. To avoid numerical frequency, against the number density at temperaturds of
divergence, Gram-Schmidt reorthonormalization is regularly=0.7 andT= 1.0, respectively, for systems of 500 particles.
applied. For more detail, we refer the reader to RefsUp top~0.93 the fluids remain in the dense liquid phase and
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FIG. 2. Plot of the scaled Kolmogorov-Sinai entropjis vs FIG. 3. Plot of the reduced Kolmogorov-Sinai entropfs vs
number density at temperature$=0.7 andT=1.0. the reduced diffusion coefficien* at temperature§=0.7 and
T=1.0.

the self-diffusion coefficients are nonzero. The normalized
self-diffusion coefficient of the HS fluid shows negligible N=64 andN=108, as observed by van Beijerehal.[22].
temperature dependence. This lack of temperature depepigure 2 clearly shows thdt}s is independent of tempera-
dence comes about because the total energy of the systemyifre for the HS fluid. This lack of temperature dependence is
linearly dependent on the temperature. Specifically, thejue to the linear dependence of the total energy of the system
Hamiltonian of the HS fluid is proportional t@, and the  on temperature. In general, for systems at the same tempera-
average time between collisions is proportional 6% ture and density, the numerical values of the Lyapunov ex-
Hence, the diffusion coefficient and the average collision freponents of the WCA fluid are smaller than those of the HS
quency are expected to be proportional T§* and, as a fluid. This arises because in WCA fluids the trajectory of the
consequence, the self-diffusion coefficient normalized by th%ystem more frequently passes through regions of concave
average collision frequencp*, is independent of tempera- potential energy surface, whereas the trajectory of the HS
ture. On the other hand, the normalized self-diffusion coeffluid system evolves freely between each collision. Consider
ficient of the WCA fluid shows temperature-dependent bea perturbed Vectoﬁ:{ér'ﬁp}_ If a system has a continuous
havior, and the strength of this temperature dependencgairwise potential and a nonzero Hessian maitixthen the
becomes stronger with increasing density. evolution of & after a certain timet is approximately{ 5q

The molecular level mechanism of diffusion in WCA flu- 4 ( sp/m) st, (sp—H- 5q) 8t}. If the system is in a region of
ids differs from that in HS fluids, especially in the high- syfficiently high density, the ensemble averagdofq can
density region. Diffusion in HS fluids proceeds via succeshe regarded as an effective restoring force. This idea has
sive binary collisions between particle pairs, whereas in &een qualitatively verified by observing that the fraction of
WCA fluid diffusion behavior is determined not only by suc- the unstable mode obtained from the Hessian matrix de-
cessive collisions but also by structural relaxations on thereases as the density increaf2s).
continuous landscape of the potential energy surface, which |, Fig. 3, we plot the logarithm ohs versus the loga-
is sensitive to temperature and causes the reduction of th&nm of D* . This graph clearly shows the algebraic relation-
internal pressure. The additional factors influencing diﬁusionship proposed in Eq3). For the HS fluids, the relationship

in WCA fluids cause these fluids to have larger diffusionpeqyeen these two quantities is the same at the two tempera-
coefficients than HS fluids at the same density and tempergyas considered. with a fixed value gt=0.17 within an

ture. For example_, the pressure of a WCA fluid of densitygror of 3%. For the WCA fluids, the value of is also
p=0.93 atT=0.7 is approximately 4.5 times larger than the j,qenendent of temperature, with a valueret0.44, and the

pressure of the corresponding HS fluid. _ temperature dependence can be reflected in a prefattpr
In Fig. 2 the density dependence bfs=hxs/Nv is a5 follows:

shown for the WCA and HS systems at temperature§ of

=0.7 andT=1.0. Due to the long times required to calculate h

the Lyapunov exponents, the data presented here were ob- ﬁ:p(-r)
tained from systems ofl=32 particles for the WCA fluid Nv

and N=64 particles for the HS fluid. The test calculations

for WCA fluids of N=32 andN =64 showed thalhys/N has  The numerical values of the exponents for the HS and WCA
negligible dependence on the number of particles. For exsystems are far from the value of 1/3 proposed by Barnett for
ample, atp=0.92 andT=0.7, hxs/N=5.08 for both N a low-density plasma, and furthermore the exponent is sys-
=32 andN=64. We also confirmed for the HS fluids that tem dependent. However, the mathematical form of the rela-
the value ofhys/N shows no difference between results for tion remains the same. Figure 3 shows thit, which is a
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measure of of the global instability of the system, is relatedself-diffusion coefficient®* of the HS fluid and WCA fluid

to D* by a simple algebraic relation, which supports theare 4.26<10 2 and 4.14<10 3, respectively. Both systems
qualitative similarity between these two quantities. Next, toshow clear small peaks in the velocity autocorrelation func-
more closely examine quantitative differences, we focus ofion that are characteristic of backscattering, bfg of the
two cases. The first case considers the HS flui@g-a0.83  Hs fiyid is almost twice that of the WCA fluid. This large
andT=1.0, and the WCA fluid ap=0.60 andT=1.0. As gifference is a reflection of the fact that the effective restor-

can be seen in Fig. 1, these two systems have almost thg force mentioned above continually suppresses the sepa-
same value oy (0.740 for the HS fluid and 0.736 for the ration rate of small perturbations in WCA systems.

WCA fluid). However, the normalized self-diffusion coeffi-  |n summary, we examined the KS entropy and the self-
cientsD* of the two systems are markedly different. This diffusion coefficient of HS fluids and WCA fluids. The KS
difference is due to the different behavior of velocity auto-entropy and the diffusion coefficient, normalized by the av-
correlation function of each system. The velocity autocorreerage collision frequency, show monotonic decay with re-
lation function of the HS fluid shows a fast initial decay, spect to number density. From observations of the density
followed by a small peak that is due to backscattering. Orjependence of these two quantities, we proposed an alge-
the other hand, the velocity autocorrelation function of thepraic relationship betweenis andD* (depicted in Fig. R
WCA fluid shows or_lly a slow monotonic decay without any The numerical data fon%s andD* are fitted to Eq(3) with

sign of backscattering, resulting in a much larger value thigh precision with values ofy=0.17 and 0.44 for the HS

D* for the WCA fluid. Further study shows that WCA fluids f,id and WCA fluid respectively.

begin to show backscattering fpe>0.78. Thus, the second
case we consider is the HS fluid at=0.75 and the WCA We acknowledge that this work was supported by Korea
fluid at p=0.82, withT=1.0 for both cases. The normalized Research Foundation Grant N&KRF-2002-070-C00048
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